Rambler's Top100
Статьи ИКС № 03 2012
Денис МОРГУНОВ  13 марта 2012

Оптические разъемы LC при высокой плотности монтажа

Рост числа эксплуатируемых портов, скоростей и дальности передачи информации требует новых подходов к организации подключения портов оборудования и СКС. Один из подходов – использование разъемов типа LC, которые выпускаются в разнообразных конструктивных исполнениях. Однако не все они эффективны в условиях высокой плотности монтажа пассивных и активных портов.

Разъем LC

Оптический интерфейс типа LC (Lucent Connector) – один из самых широко используемых сегодня типов разъемных соединителей. Разъем был представлен рынку в 1996 г. компанией Lucent Technologies и получил признание специалистов благодаря ряду преимуществ, которые получает пользователь в реальных условиях эксплуатации конечного пассивного и активного оборудования наряду с использованием SFP-трансиверов. По оценкам аналитиков, на сегодня по всему миру установлено более 60 млн коннекторов LC. В настоящее время около 30 компаний официально обладают лицензией на производство данного типа интерфейса.

Среди главных преимуществ оптического соединителя LC – возможность разместить дуплексный оптический порт на той же площади, что и медный порт RJ45 (рис. 1), к тому же в соединителе LC используется схожий механизм фиксации защелкой.

В первоначальном варианте исполнения оптическая розетка LC имела посадочные размеры, равные размерам отверстия под медную розетку, что допускало «повторное использование» существующих медных коммутационных панелей и их комбинирование.

 
 
 
 
 
Рис. 7. Вариант организации подключений портов коммутатора 
До недавнего прошлого удельный вес оптической проводки в общем объеме кабельной системы составлял менее 10%, поскольку основные задачи подключения активного оборудования эффективно решались с помощью традиционных медножильных СКС различных категорий. Ситуация начала меняться с появлением приложений 10G Ethernet и развитием инфраструктуры сетей хранения данных, работающих по протоколу Fibre Channel, который требует более низкого уровня потерь в канале.

Ограниченность доступных площадей в машинных залах ЦОДов и общий рост числа единиц активного оборудования на единицу площади зала привели к появлению более эффективного – с точки зрения размеров, энергопотребления и охлаждения – активного оборудования. В свою очередь это заставило производителей структурированных кабельных систем адаптировать свои решения для размещения большего количества пассивных оптических портов за счет внедрения новой малогабаритной дуплексной розетки LC (так называемый тип SC foot print), посадочные размеры которой совпадают с размерами стандартной симплексной розетки SC (рис. 2).

Плотность или удобство

Появление малогабаритной дуплексной розетки LC позволило повысить плотность монтажа за счет более тесного расположения портов на коммутационной оптической панели. Сегодня на одном стандартном юните высоты можно разместить до 48 дуплексных розеток LC. С точки зрения инфраструктуры ЦОДа это означает, например, возможность существенно сократить количество используемых юнитов в стойке с активным оборудованием, сделать коммутационное поле компактнее. Однако с эксплуатационной точки зрения остается нерешенным вопрос удобства обслуживания подключаемых оптических разъемов LC. Именно здесь большинству производителей СКС так и не удалось существенно продвинуться в технологическом плане.

Удобство эксплуатации любого разъемного соединения в общем случае подразумевает, что можно получить свободный доступ к оптическому разъему, не затрагивая соседние, уже подключенные соединители. Эта проблема особенно критична в условиях высокой плотности монтажа, которая сегодня характерна для центральных коммутационных оптических кроссов, а также при подключении целого ряда типов сетевых коммутаторов или маршрутизаторов.

Не секрет, что еще несколько лет назад специалисты отделов эксплуатации крайне негативно воспринимали интерфейс LC, ссылаясь на то, что он имеет крайне малые размеры в сравнении с привычным соединителем SC, что его сложно извлечь из розетки (часто производители СКС предлагали даже использовать специальный инструмент, облегчающий эту операцию), что образуется «борода» из перепутанных патчкордов, так как защелки разъемов все время цепляются за кабель, усложняя процесс извлечения оптического шнура.

Поскольку плотность подключений в случае LC выше в два и более раза по сравнению с другими соединителями (например, SC), а конструктивное исполнение защелки разъема LC и медного разъема RJ45 реализовано сходным образом, то в условиях подключенных шнуров доступ к защелкам существенно ограничен (рис. 3, а). Думаю, большинство специалистов хорошо помнят лучший инструмент для обслуживания дуплексных подключений LC – обычный пинцет.

Разработчики и производители оптических разъемов LC, приняв во внимание это ограничение, внесли конструктивные изменения в форму защелки (рис. 3, б). Разнообразные варианты исполнения, предлагаемые разными производителями, предполагают, например, создание дополнительной площадки для нажатия на защелку разъема (площадка является частью либо корпуса разъема, либо дуплексной клипсы), увеличение полезной рабочей площади защелки либо усложнение геометрии ее поверхности, чтобы нажатие на защелку разъема срабатывало более эффективно.

Наличие дополнительной площадки упрощает доступ к защелкам разъема и уменьшает перепутывание оптических шнуров. С другой стороны, в силу особенностей деформации полимерного материала и малых размеров защелки невозможно обеспечить равномерный нажим на защелки в дуплексном варианте исполнения соединителя LC. Обычно это вызывает залипание дуплексного разъема при отключении, когда одна защелка сработала, а вторая нет. Наряду с дополнительными затратами времени и сил это может привести к разрушению корпуса разъема из-за несимметричной боковой нагрузки.

Среди интересных, нестандартных решений, имеющихся на рынке, следует отметить конструктивное исполнение разъема LC с так называемой обращенной защелкой (рис. 4). Сохраняя полную совместимость с розетками стандартного исполнения, такая конструкция разъема обеспечивает хороший доступ к защелкам за счет увеличенной площадки, снижает вероятность перепутывания оптических шнуров из-за того, что кабель оптического шнура зацепится за защелку. Кроме того, в дуплексном исполнении благодаря конструкции используемой клипсы прикладываемое усилие равномерно распределяется на обе защелки.

Гибкие хвостовики

Один из альтернативных подходов, повышающих удобство обслуживания разъемных соединений LC в условиях высокой плотности монтажа, – использование укороченных гибких хвостовиков (рис. 5). Производители, предлагающие такие решения, сообщают о том, что реализуется удобный доступ к оптическим портам и что возможна безопасная выкладка коммутационных шнуров даже в условиях ограниченного пространства между плоскостью установки оборудования и дверью шкафа.

Отметим, однако, что использование укороченного тела разъема и/или гибкого хвостовика тем не менее не решает вопрос удобства доступа к защелкам самого разъема.

Конструкция LC-HD

С точки зрения эксплуатации разъемных соединений представляет особый интерес возможность комбинировать высокую плотность подключений, свойственную интерфейсу LC, с вариантом фиксации push-pull интерфейса SC. В этом случае доступ к защелкам разъемов, особенно в дуплексном исполнении, вообще не требуется. На рынке сегодня представлена такая конструкция (рис. 6) под торговой маркой LC-HD (предмет действующего патента), где аббревиатура HD означает High Density.

Производитель, сохранив полную совместимость со стандартными розетками LC и трансиверами SFP/SFP+, создал решение для организации высокой плотности подключений как на коммутационных панелях, так и на картах/лезвиях активного оборудования. Главная его особенность – использование специальной клипсы, благодаря которой вообще нет необходимости в доступе к защелкам разъемов.

Предлагаемое конструктивное решение одинаково эффективно работает в случаях горизонтальной и вертикальной ориентации розеток LC или оптических трансиверов, например на лезвиях тяжелого многопортового коммутатора (рис. 7).

Прикладывая к защелкам разъемов равномерное и симметричное усилие, пользователь может подключить или отключить дуплексный разъем от порта коммутатора практически вслепую – это типичная ситуация, например, при использовании лезвий с сверхплотным монтажом трансиверов. 

Немного о перспективах

И в заключение хочется обратить внимание на особый вид оптического дуплексного интерфейса – mini-LC. Это решение возникло как следствие попытки увеличить плотность монтажа трансиверов на лезвии коммутатора. Характерной его особенностью является уменьшенное расстояние между геометрическими центрами разъемов – 5,25 мм вместо 6,25 мм для стандартного исполнения. Соответствующие изменения были внесены и в конструкцию трансиверов, которые получили название mini-SFP.

По-видимому, практическое будущее такого решения пока неочевидно, хотя целый ряд производителей оптических разъемов заявил о доступности для заказа разъемов mini-LC и коммутационных шнуров на их основе. В любом случае данное решение не может быть адаптировано в рамках законченной кабельной системы, так как не выполняется требование совместимости и универсальности кабельной проводки по отношению к активному оборудованию различных вендоров в машинном зале ЦОДа.

В целом же разработчики и производители пассивных компонентов находятся только в самом начале пути, и безусловно, новые интересные инженерные решения еще будут представлены вниманию рынка.
Поделиться:
Заметили неточность или опечатку в тексте? Выделите её мышкой и нажмите: Ctrl + Enter. Спасибо!