Рубрикатор |
Все новости | Новости компаний |
Ученые Пермского Политеха нашли способ повысить прибыль предприятий при подготовке нефти
13 октября 2022 |
Исследователи из Пермского Политеха улучшили автоматизиро-ванное управление технологическим процессом подготовки «черного золота», чтобы снизить затраты на производство и улучшить качество готового продукта. Для этого они использовали алгоритм оптимизации на основе нейросетей и аналитических моделей.
Подготовка нефти до товарного качества – процесс, который состоит из множества стадий. В процессе важно обеспечивать оптимальные технологические параметры, чтобы повысить эффективность использования оборудования. Результат, к которому стремятся предприятия, – увеличение прибыли. Исследователи из Пермского Политеха усовершенствовали автоматизированное управление технологическим процессом подготовки «черного золота», чтобы снизить затраты на производство и улучшить качество готового продукта. Для этого они использовали алгоритм оптимизации на основе нейросетей и аналитических моделей.
Математические основы алгоритмов позволяют реализовать их на отечественных программно-вычислительных комплексах автоматизированных систем управления технологическими процессами, а также могут заменить их в зарубежных компьютерных моделирующих системах.
– В процессе эксплуатации месторождения меняются состав и свойства нефтяной эмульсии, поступающей на установку подготовки нефти. Системы автоматического контроля расхода эмульсии и лабораторного контроля обводненности нефти, а также программно-технический комплекс для управления этим процессом позволяют оперативно отслеживать параметры технологического режима. От состава оборудования и режима его работы зависят качество готового «черного золота» и прибыль предприятия, – рассказывает одна из исследователей, старший преподаватель кафедры «Оборудование и автоматизация химических производств» Пермского Политеха Татьяна Караневская.
Ученые Пермского Политеха предложили алгоритм оптимизации процессов для его реализации в системе управления установкой промысловой подготовки нефти. Он позволяет определить наиболее эффективные значения параметров технологического режима работы оборудования и расхода нефтяной эмульсии, что обеспечивает достижение максимальной прибыли при реализации готовой продукции. Алгоритм основан на аналитических моделях технологических процессов, принципе оптимальности Беллмана для многостадийных производств и искусственных нейронных сетях. В результате оптимальные режимы работы установки определяются в зависимости от состава и свойств нефтяной эмульсии. Эффективность решения задачи обеспечивается за счет применения принципа оптимальности многостадийных процессов.
– Мы определили управляющие параметры для основных процессов: сепарации, обезвоживания и нагрева нефтяной эмульсии. Также мы разработали аналитические модели технологических процессов и подготовили обучающие выборки для нейронных сетей. Их применение позволяет определить оптимальные значения параметров технологического режима, которые обеспечивают необходимое качество «черного золота» и получение максимальной прибыли от действующей установки промысловой подготовки нефти, – отмечает руководитель проекта, профессор кафедры «Оборудование и автоматизация химических производств» Пермского Политеха, доктор технических наук Александр Шумихин.
Исследователи подтвердили работоспособность и точность нейросетевых моделей. Они также оценили эффективность работы установки при оптимальных значениях технологических параметров и допустимом качестве нефти. По сравнению с существующим режимом работы оборудования, реализация оптимального технологического режима позволит сократить затраты на подготовку нефти на 15%. Применение принципа оптимальности и нейросетевого подхода уменьшает затраты времени и вычислительных ресурсов для оптимизации процессов.
По словам ученых, новый способ оптимизации технологического процесса можно внедрить в работу автоматизированной оперативно-управляющей системы в сфере промысловой подготовки нефти.
Результаты работы ученые опубликовали в журнале «Вестник ПНИПУ. Химическая технология и биотехнология» (2022).
Источник: Пермский Политех
Оставить свой комментарий:
Комментарии по материалу
Данный материал еще не комментировался.